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Abstract

This paper presents an efficient alternating method for analyzing the interactions among multiple circular
holes in a two-dimensional infinite domain. An analytical solution is derived for a single circular hole in an
infinite domain subjected to the arbitrary tractions across the circle boundary to achieve this purpose. This
analytical solution correlates with a successive iterative superposition process capable of satisfying the
prescribed boundary condition for each circular hole of the problem. In addition, several perforated plate
problems are solved to demonstrate the proposed method’s validity. The computed results and the available
referenced solutions closely corresponds to each other and indicates the method’s accuracy and efficiency.
© 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

In engineering, solving the elastic plane problems for a plate with multiple holes is of considerable
interest. The reliable evaluation for reducing the accompanying stress concentration factor around
these holes is necessary to assure the structural integrity of the perforated plate.

A series of analytic techniques have been devoted to treat the problem of the interacting holes
in infinite plate. Early attempts to solve these problems were restricted to two (see, for example,
Ling, 1948 ; Atsumi, 1956; Haddon, 1967 ; Kienzler and Zhuping, 1987 ; Greenwood, 1989) or
periodic set (see, for example, Isida and Igawa, 1991; Meguid et al. 1996) of equal holes. In
addition, Horii and Nemat-Nasser (1985) and Meguid and Shen (1992) used the complex potentials
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and the appropriate superposition procedure to formulate the approximate solutions for the
calculation of the stress field in a solid containing any number of holes. However, these inves-
tigations were restricted to the coaxial distributions of holes of various sizes or random distributions
of equal holes in infinite domain. Bird and Steel (1991, 1992) used the Fourier series procedure to
solve the two-dimensional bi-harmonic and harmonic equations on multiply connected circular
domains. The number of studies for the elastic problems of multiple holes with arbitrary dis-
tributions and various sizes are still limited.

Recently, the alternating method (Kantorovich and Krylov, 1964) has been successfully used to
analyze a number of two-dimensional and antiplane fracture problems with multiple cracks
arbitrarily distributed in infinite domains (Chen and Chang, 1990; Ting et al., 1994, 1995).
Nevertheless, this efficient procedure has paid little attention to the issue of the perforated plates.
Thus, the extension of the previous works to analyze the interactions among the arbitrary dis-
tribution of multiple circular holes with various sizes is very interesting, and is the main objective
of this work.

In the process of the alternating method, an analytical solution of the single circular hole in the
infinite domain subjected to the arbitrary surface tractions over the circumference of the hole must
be obtained. Although this analytic solution has been solved by the Muskhelishvili (1953) complex
method in general forms, the elastic solutions corresponding to the arbitrary tractions expressed
by the traditional trigonometric Fourier series are completely derived using Airy stress function
for the purposes of simplicity and efficiency. These analytical solutions are then used for the
successive iterative superposition procedures to satisfy the prescribed boundary conditions.

The validity of the present work is verified by analyzing several problems of multiple holes with
different sizes and arrangements. The interactions among holes are studied in detail. The results
were compared with other reference solutions to show that with simple technique and minimum
computing effort they are capable of obtaining accurate stress concentration factor.

2. Analytical solution for a hole with arbitrary surface tractions in an infinite domain

Figure 1 shows an infinite domain with a circular hole of radius R and center at X = 0 and
Y = 0. The hole surface is subjected to an arbitrary normal force 7,(6) and shear force 7,(0). For
the plane stress problem neglecting the body forces, the stresses are derived from Airy stress
function @ satisfying the bi-harmonic equation

\ * 1o 1@N\(@ 1o 12
Vb= +-—+ s+ ®=0

ot rart e )\ar Trar T ar
The stress components relative to the polar coordinates are
0, = r7]®,r+r72q),96’ Oy = (D,rra Tg = — (r7]®,6),r'

The radial and tangential loads on the hole surface can be expressed by the trigonometric Fourier
series as
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Fig. 1. Arbitrary normal and shear load applied to the hole boundary in an infinite domain.

T,.(0) = i a,, cos(mb) + i b,,sin(m0), T,(0) = Z ¢, cos(m0) + Z d,, sin(m0)

m=0 m=1 m=1
The Airy stress function can be assumed as
O = (ag+co)(fy Inr+for? Inr+f3r7) +co (far sin 0+ fsr cos 0+ £ 0)
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+ Z [fl 2;/"”Jr2 +f1 3rm +f14r7m +f1 51"7()7172)] [(am + dm) COS(mH) + (bm + Cm) 51n(m0)]

m=2
where f; are undetermined constants. Using the boundary conditions ¢, = — T, or 7, = — T, at
r = R and the stresses approach zero as r tend to infinity, and the compatibility conditions of the
displacement components, the stress and displacement components can then be completely derived

as follows:

R\? R\? R .
o — —a0< )—[A( >—(A—1) ()][al cos 0+ b, sin 0]
r r r
+ [B <I:> +(4-1) <f>] [¢, sin 0 —d, cos 0]
n m (RN"T2 m+2
tL 2()
+
2

T <f> } [a,, cos(mB) + b,, sin(mb)]
+ z:: |:Wl 2 < >m+2 m;-z <r> :| [Cm Sm(m()) dm COS(I’I’IQ)]



536 K. Ting et al. | International Journal of Solids and Structures 36 (1999) 533-556
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where A =(1—v)/4, B=G+v)/4, C=1+v, D =(1—-)/8, F=(1—v)%/4, G =3+v)(1+v)/8, E
is Young’s modulus and v is the Poisson’s ratio.

3. Alternating method solving multiple holes in an infinite domain

Consider a two-dimensional infinite solid containing & circular holes under farfield uniform
stresses, as shown in Fig. 2(a). This problem can be expressed as a superposition of two cases, as
illustrated in Fig. 2(b) and 2(c). Figure 2(b) represents the case when external forces are acting on
the infinite plane without any holes and Fig. 2(c) the case with multiple circular holes under the
fictitious tractions along the hole boundaries. Hence, based on the analytical solution of a circular
hole under arbitrary surface tractions in an infinite plate derived in the previous section, the
iterative processes of the alternating method, illustrated in Fig. 3, can be stated as follows:

(1) Consider the arbitrary load distributions 7% on the boundary surface of the circular hole j
(j=1,2,...,k) for the iterative cycle i by Fourier series represented, as shown in Fig. 3(a).
T’ can be written in matrix form as

$513662

Fig. 2. Superposition scheme for the alternating method.
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Fig. 3. Alternating procedures.
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where the matrix [A]; consists of the coefficients of Fourier series for the jth hole for the ith
iteration. The superscript T designated the transpose of the matrix.

Using the analytical solution obtained in the previous section, the interactive residual tractions
t}, induced by hole 1 at an imaginary hole n (n = 2,3, ..., k) can be computed (see Fig. 3(b)).
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Thus, the original loading force T% of the hole 2 (shown in Fig. 3(c)) must minus the interactive
residual tractions 7}, that is the influence of the hole 2 induced by hole 1, i.e., T5 —1r},. And
the residual tractions of the other holes corresponding to these residual tractions are 75,
(n=1,3,4,...,k). In general, the residual tractions for hole k is T} — i, —the —"**— tl_ 1>
and the corresponding coefficient matrix is

[A];& - [A][l/( - [A][Zk - [A]’(./cf 1k

The superposition procedure can be repeated with the next residual loads 7" for the iterative
cycle i+ 1, as shown in Fig. 3(f). The residual loads and the corresponding coefficient matrix
will be reduced after each cycle of the iteration and may be expressed as

k

k
Tl == Yt M= Y [l = L2k

n=j+1 n=j+1

(3) Once the ratio of residual stresses is released/permissible stress for each hole becomes smaller
than a small value y, say

k
S TH/S <9,y = 0.001
Jj=1

Here S is the initial stresses applied on hole surfaces. When the iteration is finished, step 5 is
to be executed. If the tractions are not negligible, the iteration is not complete and therefore
goes to step 4.

(4) Repeat all the iteration procedures (i.e. step 1 to step 3) until the residual tractions on each
hole are negligible, considering the residual tractions of step 2 as newly applied loading acting
on each hole surface.

(5) Evaluate the final stress components and stress concentration factor.

4. Results and discussion

A novel alternating method is proposed in this study, the validity of which was tested using a
number of examples of an infinite domain with two or multiple circular holes with various sizes
and arbitrary distributions. The solutions developed are compared with the works of Haddon
(1967), Horii and Nemat-Nasser (1985) and Meguid and Shen (1992). Also, the effects of the
interactions among multiple holes on the stress concentration factor at the boundaries of the
circular holes were studied and presented.

4.1. Two circular holes in an infinite domain

Problems of an infinite domain with two equal or unequal co-axial circular holes are shown in
the upper right corner of Figs 4-10, under farfield uniform stresses o. The holes 1 and 2 with radii
a, and a, are named as main and defense holes, respectively. The origin of global axes X and Y is
at the center of the main hole 1. The inclination of the defense hole corresponding to the main
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Fig. 4. The variation of the normalized tangential stress at the boundary of the main hole as a function of 0 for different
proportionality constants o with the two equal holes configuration (ff = 0°).

hole is . The distance between the centers of the two holes is a,+a,+aa,, where « is the
proportionality constant. The effects of two interacting holes on the stress distributions as a
function of o and f§ are discussed as follows.

(1) First, two holes of equal sizes in an infinite domain were considered. The farfield simple
tension is applied in the Y-direction. The interaction between two holes was studied using five sets
of o with values 0.2, 0.4, 1.0, 4.0 and 10.0. Figures 4 and 5 depict the computed normalized
tangential stresses ¢y/c along the circular boundary for two angles of inclination = 0° (i.e., two
collinear holes normal to the loading direction) and = 90° (i.e., two collinear holes along the
loading direction). The results of the present alternating method are in close agreement with the
reference solution of Horii’s (1985), as evident in the two figures. The maximum and minimum
normalized tangential stresses, and the corresponding locations 0 (in degrees) are listed in Table
1. Again, the values are consistent with those of Haddon (1967). When two holes are nearly close
to each other (i.e. & = 0.2), the main hole was found to have a larger normalized tangential stress,
namely 6.107, when the loading is normal to the two collinear holes. The peak value indicates that
when the holes are very close, their interactive effects are strong. When two holes become separated
by an appropriate distance (i.e. « = 10.0), the results for § = 0° and f = 90° were observed to have
almost the same value. This phenomenon suggests that the interactive effect between the two holes
is insignificant when « = 10.0. Figure 6 illustrates the calculated stress concentration factor (SCF),
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Fig. 5. The variation of the normalized tangential stress at the boundary of the main hole as a function of 6 for different
proportionality constants ¢ with the two equal holes configuration (f = 90°).

the maximum normalized tangential stress ¢,/c along the boundary of hole, vs the inclination f of
the defense hole to the main hole, corresponding to each value of o chosen for the present study.
Superposed on this figure are the solution given in Meguid and Shen (1992) for « = 1.0. The
maximum and minimum of SCF, for the inclinations 8, and f3, of the defense hole to the main
hole, for each value of o are listed in Table 2. The closer the two holes are, the larger the
normalized tangential stresses are. If the inclination is in some range, SCF can be less than the
stress concentration factor k, = 3.0 for a circular hole in infinite domain (Timoshenko and Goodier,
1970). These ranges of inclination are also shown in Table 2.

(2) Two collinear holes of unequal size in an infinite domain when subjected to a normal farfield
loading and a parallel one, i.e. § = 0° and § = 90°, are studied. The stress concentration factors
of the main hole are affected by five different defense hole sizes, 0.2a,, 0.44,, 0.6a,, 0.8a, and 1.0q,,
as functions of the proportionality constants o and are depicted in Figs 7-10. The curves for the
size of defense hole 0.2a, vs = 0.2, 0.8 and 2.0 shows perfect agreement with those of Horii and
Nemat-Nasser (1985). Consider the case § = 0°; Fig. 7 suggests that the increase in the size of the
defense hole would result in the increase of the stress concentration factor of the main hole. Figure
8 indicates that SCF of the defense hole is independent of the hole size. Furthermore, the role of
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Fig. 6. The variation of SCF at the main hole as a function of inclination angle f§ for different proportionality constants
o with the two equal holes configuration.

the defense hole becomes insignificant (i.e. |[SCF —ky|/k, < 0.05) if the proportionality constant o
exceeds 1.3. The phenomenon of SCF of the main hole in the case of f = 90° is contrary to that
of f = 0°. Figure 9 suggests that the increase in the size of the defense hole reduces SCF at the
main hole. The interaction between the main hole and the defense hole is irrelevant when o exceeds
4.6.

4.2. Three collinear circular holes in an infinite domain

The upper panel of Fig. 11 illustrates the case of an infinite domain with three equal or unequal
collinear circular holes, under farfield uniform stress ¢ in the Y-direction. The central hole 1 is
denoted as a main hole and the others are defense holes with radii a, and a,, respectively. The
origin of global axes X and Y is at the center of the main hole 1. The inclination of the defense
hole to the main hole is . The distance between the centers of the two holes is a,+a,+aa,.
Following is a discussion of the iterations among multiple holes on the stress distributions as a
function of o and .

Consider five different distances aa,, with « = 0.2, 0.4, 1.0, 4.0 and 10.0, among three equal
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Fig. 7. SCF at the main hole as a function of « corresponding to different sizes of defense hole for two holes configuration

(f=107.

collinear circular holes. The variations of SCF at the main and defense holes with the inclination
angle f are illustrated in Figs 11 and 12. The results of SCF at the main and defense holes for
B =0°and f = 90°, and for the center distance 3a, calculated by Meguid and Shen (1992) fits
perfectly to the curves obtained from our calculation. Those values of 5, and f, for the main and
defense holes which make SCF maximum and minimum, respectively, are listed in Table 3. For
the main hole, the variations of SCF vs the inclination f from 75-105° are not significant.

For different sizes of the defense hole, the variations of SCF with the distance between the
centers of the holes subjected to the farfield loads normal and parallel to three collinear holes are
depicted in Figs 13—16. These curves closely resemble those of two unequal holes as shown in Figs
7-10. In the case of = 0°, SCF of three holes is higher than those of two holes due to the effect
of a higher number of holes. If the size of the defense hole is very small compared with the main
hole, the effect of the defense hole cannot be reached even though the three holes are very close.
On the contrary, when the holes are located parallel to loading (i.e. f = 90°), the SCF of three
holes is smaller than that of two holes. On the other hand, the interactions between the main hole
and the defense hole shown in Figs 13 and 15 becomes insignificant when o exceeds 1.7 and 7.9,
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Fig. 8. SCF at the defense hole as a function of o corresponding to different sizes of defense hole for two holes
configuration (f = 0°).

respectively. The results of the proposed method are in good agreement with the reference solution
for three equal holes calculated by Meguid and Shen (1992).

4.3. Multiple holes in an infinite domain

Consider a square arrangement with a central hole. Five different ratios of the sizes of the main
and the defense holes, namely, a,/a, = 1.0, 0.8, 0.6, 0.4, 0.2 and @, = a; = a, = as, were selected to
study the interactions among holes. Figures 17 and 18 show the variation of SCF at the main hole
and the defense hole, respectively, with the proportionality constant o corresponding to the five
size ratios. The reference solution of Meguid and Shen (1992) for the case o« = 1.0 and a,/a, = 1 is
in agreement with the present results. These figures show that the SCF at the main hole increases
with the increase in the size of the defense hole. However, if the value of « is larger than 8.2, the
effects of the defense holes can be neglected.

5. Conclusions

In this work, the general analytical solution for arbitrary radial and tangential force distributions
on the surface of the hole in an infinite domain is successfully derived. Based on this solution, the
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Fig. 9. SCF at the main hole as a function of « corresponding to different sizes of defense hole for two holes configuration

(= 90%).



546 K. Ting et al. | International Journal of Solids and Structures 36 (1999) 533-556

$5136610

Fig. 10. SCF at the defense hole as a function of o corresponding to different sizes of defense hole for two holes
configuration (ff = 90°).
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Table 1
The maximum and minimum normalized tangential stresses, and the corresponding locations 0 (in degrees) for the two
equal holes configuration

aolo u=202 a=04 a=1.0 a=4.0 o=10
p=0° Maximum Present 6.107 4.423 3.264 3.020 3.002
(0.0°) (0.0°) (0.0°) (180.0°) (180.0°%)
Haddon 6.106 4.423 3.264 3.020 3.003
(0.0%) (0.0°) (0.0%) (180.0°) (180.0°%)
Minimum Present —0.962 —0.924 —0.886 —0.920 —0.974
(88.3°) (89.7°) (91.1°) (90.6°) (90.1°)
Haddon —0.962 —0.924 —0.886 —0.920 —0.974
(88.8%) (89.7°) (91.1°) (90.6°) (90.1°)
B =90° Maximum Present 2.611 2.619 2.650 2.827 2.948
(185.6°) (185.4°) (184.6°) (181.3°) (180.2°)
Haddon 2.611 2.619 2.650 2.827 2.948
(185.6°%) (185.4°) (184.6°%) (181.3°) (180.2°)
Minimum Present —0.918 —0.905 —0.896 —0.940 —0.979
(270.0%) (270.0°) (270.0°) (270.0°) (270.0°)
Haddon —0.918 —0.905 —0.896 —0.940 —-0.979
(270.0°) (270.0°) (270.0°%) (270.0°) (270.0°%)

Table 2
The maximum and minimum SCF corresponding to various values of « for f;, and f, with the two equal holes
configuration

Maximum SCF Minimum SCF

Range of f8
o B SCF B> SCF (SCF < ky)
o=0.2 22 6.561 90 2.611 80-90
o=0.4 26 5.166 90 2.619 79-90
o=1.0 28 4.018 90 2.650 76-90
ou=4.0 33 3.175 90 2.827 68-90
oa=10 35 3.037 90 2.948 64-90

Table 3
The maximum and minimum SCF corresponding to various values of « for f, and f, with the three equal holes
configuration

Main hole Defense hole
Maximum Minimum Maximum Minimum
Range Range

o B, SCF p, SCF (SCF < ky) B SCF p, SCF (SCF < ky)
o=0.2 23 7.642 75 1.997 69-90 24 7.521 90 2.527 82-90
o=0.4 27 5.859 72 2.050 66-90 28 5.779 90 2.540 81-90
a=1.0 29 4.347 90 2.266 59-90 30 4.315 90 2.581 77-90
o=4.0 34 3.263 90 2.655 60-90 33 3.221 90 2.790 68-90

o=10 37 3.063 90 2.896 60-90 35 3.046 90 2.935 64-90
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Fig. 11. The variation of SCF at the main hole as a function of inclination f for different proportionality constants o
with the three equal holes configuration.
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Fig. 12. The variation of SCF at the defense hole as a function of inclination f for different proportionality constants o
with the three equal holes configuration.
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Fig. 13. SCF at the main hole as a function of « corresponding to different sizes of defense hole for three holes
configuration (ff = 0°).
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Fig. 14. SCF at the defense hole as a function of « corresponding to different sizes of defense hole for three holes
configuration (f = 0°).
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Fig. 15. SCF at the main hole as a function of o corresponding to different sizes of defense hole for three holes
configuration (ff = 90°).
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Fig. 16. SCF at the defense hole as a function of « corresponding to different sizes of defense hole for three holes
configuration (ff = 90°).
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Fig. 17. SCF at the main hole as a function of o corresponding to different sizes of defense hole for five holes
configuration.
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Fig. 18. SCF at the defense hole as a function of « corresponding to different sizes of defense hole for five holes
configuration.

alternating method is formulated and applied to analyze the perforated problems with multiple
holes under arbitrary loading. The interaction effects among holes can be accurately evaluated
through very simple iteration procedure even when the holes are very close. This work can further
be extended to analyze multiple holes distributed in a finite plate associated with the finite element
method or boundary element method, and will be presented in the near future.
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